How do you find the derivative of y=1/2 ln[(1+x)/(1-x)]?
1 Answer
Nov 9, 2016
Explanation:
y = 1/2ln((1+x)/(1-x))
:. y = 1/2{ln(1+x)-ln(1-x)} (law of logs)
Differentiating (using the chain rule) gives:
dy/dx = 1/2{1/(1+x)-(-1)/(1-x)}
:. dy/dx = 1/2{ ( (1-x)+(1+x) )/((1+x)(1-x)) }
:. dy/dx = 1/2{ 2/(1-x^2) }
:. dy/dx = 1/(1-x^2)