How do you find the derivative of y=arcsin(2x+1)?
1 Answer
Sep 19, 2016
Explanation:
Note that:
d/dxarcsin(x)=1/sqrt(1-x^2)
So, according to the chain rule:
d/dxarcsin(f(x))=(f'(x))/sqrt(1-f(x)^2)
So, where
dy/dx=d/dxarcsin(2x+1)=2/sqrt(1-(2x+1)^2)
=2/sqrt(1-(4x^2+4x+1))
=2/sqrt(-4x^2-4x)
=2/(sqrt4sqrt(-x^2-x))
=1/sqrt(-x^2-x)