How do you find the derivative of y=arcsin(2x+1)?

1 Answer
Oct 26, 2016

dy/dx=1/sqrt(-x^2-x)

Explanation:

rewrite y=arcsin(2x+1) as siny=2x+1

Differentiating implicitly we get;
cosydy/dx=2
:. dy/dx=2/cosy

Using sin^2A+cos^2A-=1 => (2x+1)^2+cos^2y=1
:. 4x^2+4x+1+cos^2y=1
:. cos^2y=-4x^2-4x
:. cos^2y=4(-x^2-x)
cosy=2sqrt(-x^2-x)

and so :. dy/dx=2/cosy => dy/dx=2/(2sqrt(-x^2-x))
Hence, dy/dx=1/sqrt(-x^2-x)