How do you find the derivative of y = arcsin(3x + 2)y=arcsin(3x+2)?

1 Answer
Dec 23, 2016

The answer is =3/sqrt(1-(3x+2)^2)=31(3x+2)2

Explanation:

We need cos^2x+sin2x=1cos2x+sin2x=1

and (sinx)'=cosx

y=arcsin(3x+2)

:. siny=3x+2

Differentiating with respect to x

(siny)'=(3x+2)'

cosydy/dx=3

dy/dx=3/cosy

cos^2y=1-sin^2y=1-(3x+2)^2

cosy=sqrt(1-(3x+2)^2)

So,

dy/dx=3/sqrt(1-(3x+2)^2)