How do you find the derivative of y = arcsin(5x)y=arcsin(5x)?

1 Answer
Nov 15, 2016

dy/dx = 5/sqrt(1-25x^2) dydx=5125x2

Explanation:

y = arcsin(5x) y=arcsin(5x)

siny = 5x siny=5x ..... [1]

We can now differentiate implicitly to get:

cos(y)dy/dx = 5 cos(y)dydx=5 ..... [2]

Using the fundamental trig identity sin^2A+cos^2A-=1sin2A+cos2A1 we can write:

sin^2(y+cos^2(y)=1sin2(y+cos2(y)=1
:. (5x)^2+cos^2(y)=1 (from [1])
:. cos^2(y)=1-25x^2
:. cos(y)=sqrt(1-25x^2)

Substituting into [2] we get:

sqrt(1-25x^2)dy/dx = 5

:. dy/dx = 5/sqrt(1-25x^2)