How do you find the derivative of y = arcsin(x^5) ?

1 Answer
Sep 9, 2017

dy/dx=(5x^4)/(sqrt(1-x^(10)))

Explanation:

"differentiate using the "color(blue)"chain rule"

•color(white)(x)d/dx(arcsin(f(x)))=(f'(x))/(sqrt(1-(f(x))^2))

y=arcsin(x^5)

rArrdy/dx=(5x^4)/(sqrt(1-x^(10))