How do you find the derivative of y=arctan(secx + tanx)?

1 Answer
Nov 9, 2016

dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)

Explanation:

Rearranging:

tany=secx+tanx

Differentiating both sides, and recalling to use the chain rule on the left:

sec^2y*dy/dx=secxtanx+sec^2x

Solving for the derivative:

dy/dx=(secxtanx+sec^2x)/sec^2y

Using the Pythagorean identity:

dy/dx=(secxtanx+sec^2x)/(1+tan^2y)

Using tany=secx+tanx:

dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)