How do you find the derivative of y=arctan(secx + tanx)?
1 Answer
Nov 9, 2016
Explanation:
Rearranging:
tany=secx+tanx
Differentiating both sides, and recalling to use the chain rule on the left:
sec^2y*dy/dx=secxtanx+sec^2x
Solving for the derivative:
dy/dx=(secxtanx+sec^2x)/sec^2y
Using the Pythagorean identity:
dy/dx=(secxtanx+sec^2x)/(1+tan^2y)
Using
dy/dx=(secxtanx+sec^2x)/(1+(secx+tanx)^2)