How do you find the derivative of y = arctan(sqrt(3(x^2)-1))?

1 Answer
Jun 18, 2017

dy/dx=1/(xsqrt(3x^2-1))

Explanation:

The first thing to know is the derivative of the function y=tan^-1(u), where u=g(x) (think "the function on the inside").

d/dx(tan^-1(u))=1/(1+u^2) (du)/dx

dy/dx=d/dx[tan^-1(sqrt(3x^2-1))]

=1/(1+(sqrt(3x^2-1))^2) d/dx[(3x^2-1)^(1/2)]

=1/(1+3x^2-1) (1/2(3x^2-1)^(-1/2)(6x))

=1/(cancel(3)x^cancel(2)) (cancel(3)cancel(x)(3x^2-1)^(-1/2))

=1/(xsqrt(3x^2-1))