How do you find the derivative of y= arctan sqrt(x^2 -1) + arc csc x?

1 Answer
Jan 7, 2017

0

Explanation:

Use f ^(-1)f(a)=a.

To make y real x in [-1, 1]. Befittingly,

let x = sec theta in [-1, 1].

Now,

y = arc tan (tan theta) + pi/2 - arc sec (sec theta),

using arc csc x+arc sec x = pi/2

=theta +pi/2-theta

=pi/2 And so,

y' = 0.