How do you find the derivative of y=e^((4x^3+5)^2)y=e(4x3+5)2?

1 Answer
Dec 20, 2016

y' = 24x^2(4x^3+5)e^((4x^3+5)^2)

Explanation:

If y=e^(f(x)), then y'=f'(x)e^(f(x))

In order to differentiate f(x), we must use the chain rule, [f(x)]^n=n[f(x)]^(n-1)f'(x)

f'(x)=2(4x^3+5)12x^2=24x^2(4x^3+5)

So y' = 24x^2(4x^3+5)e^((4x^3+5)^2)