How do you find the derivative of y=e^x*lnxy=exlnx?

1 Answer
May 30, 2017

dy/dx=e^x(lnx+1/x)dydx=ex(lnx+1x)

Explanation:

"differentiate using the "color(blue)"product rule"differentiate using the product rule

"Given " y=g(x)h(x)" then"Given y=g(x)h(x) then

dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"

"here " g(x)=e^xrArrg'(x)=e^x

h(x)=lnxrArrh'(x)=1/x

rArrdy/dx=e^x. 1/x+lnx.e^x

color(white)(rArrdy/dx)=e^x(lnx+1/x)