How do you find the derivative of y=e^x*lnxy=ex⋅lnx?
1 Answer
May 30, 2017
Explanation:
"differentiate using the "color(blue)"product rule"differentiate using the product rule
"Given " y=g(x)h(x)" then"Given y=g(x)h(x) then
dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"
"here " g(x)=e^xrArrg'(x)=e^x
h(x)=lnxrArrh'(x)=1/x
rArrdy/dx=e^x. 1/x+lnx.e^x
color(white)(rArrdy/dx)=e^x(lnx+1/x)