How do you find the derivative of y= ln ((x^2 (x+1))/ (x+2)^3)?

1 Answer
Jan 9, 2017

dy/dx=(5x+4)/{x(x+1)(x+2)}

Explanation:

y=ln{(x^2(x+1))/(x+2)^3}

Using the Rules of Log function, we have,

y=lnx^2+ln(x+1)-ln(x+2)^3

=2lnx+ln(x+1)-3ln(x+2)

Diff.ing the L.H.S., we will use the Chain Rule.

E.g., d/dx{ln(x+1)}=1/(x+1)d/dx(x+1)=1/(x+1)

:. dy/dx=2(1/x)+1/(x+1)-3/(x+2)

={2(x+1)(x+2)+x(x+2)-3x(x+1)}/{x(x+1)(x+2)}

:. dy/dx=(5x+4)/{x(x+1)(x+2)}