How do you find the derivative of y=log_4 2x?

1 Answer
Dec 25, 2015

y'=1/(xln4)

Explanation:

Rewrite y using the change of base formula.

y=ln(2x)/ln4

y'=1/ln4*d/dx(ln(2x))

Recall that 1/ln4 is just a constant.

To find d/dx=(ln(2x)), use the chain rule.

ln(u)=1/u*(du)/dx

Thus,

d/dx(ln(2x))=1/(2x)d/dx(2x)=2/(2x)=1/x

Plug this back into the y' expression.

y'=1/(xln4)