How do you find the derivative of y=tanx using the limit definition?

1 Answer
Nov 4, 2016

dy/dx = sec^2x

Explanation:

By definition If y=f(x) then:
dy/dx=f'(x) =lim_(hrarr0)( (f(x+h)-f(x))/h )

So, with y=tanx we have:
dy/dx = lim_(h rarr0)((tan(x+h)-tanx)/h)

Using the trig identity for tan (a + b) we have;
dy/dx = lim_(h rarr0)((((tanx+tan h)/(1-tanx*tan h))-tanx)/h)

Putting over a common denominator of 1-tanxtan h:
:. dy/dx = lim_(h rarr0)((((tanx+tan h) - tanx(1-tanxtan h))/(1-tanxtan h))/h)
:. dy/dx = lim_(h rarr0)(((tanx+tan h-tanx+tan^2xtan h)/(1-tanxtan h))/h)
:. dy/dx = lim_(h rarr0)((tan h+tan^2xtan h)/(h(1-tanxtan h)))
:. dy/dx = lim_(h rarr0)((tan h(1+tan^2x))/(h(1-tanxtan h)))
:. dy/dx = lim_(h rarr0)((1+tan^2x)/(1-tanxtan h) * tan h/h)
:. dy/dx = lim_(h rarr0)((1+tan^2x)/(1-tanxtan h)) * lim_(h rarr0)(tan h/h)

Now,
lim_(hrarr0)(tan h/h)=lim_(hrarr0)(sin h/(cos h*h))
:. lim_(hrarr0)(tan h/h)=lim_(hrarr0)(sin h/h)*lim_(hrarr0)(1/cos h)
:. lim_(hrarr0)(tan h/h)=1*1 (standard trig limits)
:. lim_(hrarr0)(tan h/h)=1

And so,
:. dy/dx= lim_(h rarr0)((1+tan^2x)/(1-tanxtan h))
:. dy/dx = (1+tan^2x)/(1-0)
:. dy/dx = 1+tan^2x

And finally, using the standard trig identity 1+tan^2A-=sec^2A we get the solution;
dy/dx = sec^2x