How do you find the derivative of y = x^2 + x + 1 using the limit definition?

1 Answer
Jul 11, 2016

I found: y'=2x+1

Explanation:

The limit definition tells us that:
y'=lim_(h->0)(f(x+h)-f(x))/h
where h is a small increment.
In our case we get:

lim_(h->0)([(x+h)^2+(x+h)+1]-[x^2+x+1])/h=

=lim_(h->0)(cancel(x^2)+2xh+h^2cancel(+x)+hcancel(+1)cancel(-x^2)cancel(-x)cancel(-1))/h=

lim_(h->0)(h(2x+h+1)/h)=lim_(h->0)(2x+h+1)=

as h->0 we get:

y'=2x+1