How do you find the derivative of y=x^(ln(x))?

1 Answer
May 4, 2018

d/dx(x^lnx) = 2lnx x^(lnx-1)

Explanation:

Write the function as:

y= x^(lnx) = (e^lnx)^lnx = e^(ln^2x)

then using the chain rule:

d/dx(x^lnx) = d/dx (e^(ln^2x)) = e^(ln^2x) d/dx (ln^2x) = (2e^(ln^2x)lnx)/x

and simplifying:

d/dx(x^lnx) = 2lnx x^(lnx-1)