How do you find the derivative using limits of f(x)=1/(x-1)f(x)=1x1?

1 Answer
Nov 26, 2016

Please see the explanation.

Explanation:

Given:f(x) = 1/(x - 1)f(x)=1x1, then f(x + h) = 1/(x + h - 1)f(x+h)=1x+h1

Find f'(x)

f'(x) = lim_(hto0){f(x + h) - f(x)}/h

Substitute 1/(x + h - 1) for f(x + h) and 1/(x - 1) for f(x):

f'(x) = lim_(hto0){1/(x + h - 1) - 1/(x - 1)}/h

Multiply by 1 in the form of (x - 1)/(x - 1):

f'(x) = lim_(hto0){1/(x + h - 1) - 1/(x - 1)}/h(x - 1)/(x - 1)

Multiply numerators and denominators:

f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - (x - 1)/(x - 1)}/(h(x - 1))

The second term in the numerator becomes 1:

f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - 1}/(h(x - 1))

Multiply by 1 in the form of (x + h - 1)/(x + h - 1):

f'(x) = lim_(hto0){(x - 1)/(x + h - 1) - 1}/(h(x - 1))(x + h - 1)/(x + h - 1)

Multiply numerators and denominators:

f'(x) = lim_(hto0){((x - 1)(x + h - 1))/(x + h - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))

I shall mark what cancels:

f'(x) = lim_(hto0){((x - 1)cancel(x + h - 1))/cancel(x + h - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))

Remove the canceled factors:

f'(x) = lim_(hto0){(x - 1) - (x + h - 1)}/(h(x - 1)(x + h - 1))

Distribute the -1 in the numerator:

f'(x) = lim_(hto0){x - 1 - x - h + 1}/(h(x - 1)(x + h - 1))

Combine like terms in the numerator:

f'(x) = lim_(hto0){-h}/(h(x - 1)(x + h - 1))

-h/h becomes -1:

f'(x) = lim_(hto0){-1}/((x - 1)(x + h - 1))

It is safe to let hto0:

f'(x) = {-1}/((x - 1)(x - 1))

Simplify:

f'(x) = -1/(x - 1)^2