How do you find the derivative using limits of f(x)=-5xf(x)=5x?

1 Answer
Nov 24, 2016

Please see the explanation.

Explanation:

f'(x) = lim_(hto0)(f(x +h) - f(x))/h

given: f(x) = -5x

Then: f(x + h) = -5(x + h) = -5x - 5h

Substitute -5x - 5h for f(x + h)

f'(x) = lim_(hto0)(-5x - 5h - f(x))/h

Substitute -5x for f(x)

f'(x) = lim_(hto0)(-5x - 5h - -5x)/h

The x terms cancel

f'(x) = lim_(hto0)(cancel(-5x) - 5h - cancel(-5x))/h

The h/h cancels:

f'(x) = lim_(hto0)(-5cancelh)/cancelh

f'(x) = lim_(hto0) -5

Let the limit go to zero:

f'(x) = -5