How do you find the derivative using limits of f(x)=x^3+x^2?
1 Answer
Feb 11, 2017
Explanation:
The definition of the derivative of
f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h
So with
f(x+h) = (x+h)^3+(x+h)^2
\ \ \ \ \ \ \ = (x^3+3x^2h+3xh^2+h^3) +(x^2+2xh+h^2)
And so:
f(x+h)-f(x) = x^3+3x^2h+3xh^2+h^3 +x^2+2xh+h^2 -x^3-x^2
\ \ \ \ \ \ \ = 3x^2h+3xh^2+h^3 +2xh+h^2
And so the derivative of
f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2h+3xh^2+h^3 +2xh+h^2 ) / h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2+3xh+h^2 +2x+h )
\ \ \ \ \ \ \ \ = 3x^2 +2x