How do you find the derivative using limits of f(x)=x^3+x^2?

1 Answer
Feb 11, 2017

f'(x) = 3x^2 +2x

Explanation:

The definition of the derivative of y=f(x) is

f'(x)=lim_(h rarr 0) ( f(x+h)-f(x) ) / h

So with f(x) = x^3+x^2 then;

f(x+h) = (x+h)^3+(x+h)^2
\ \ \ \ \ \ \ = (x^3+3x^2h+3xh^2+h^3) +(x^2+2xh+h^2)

And so:

f(x+h)-f(x) = x^3+3x^2h+3xh^2+h^3 +x^2+2xh+h^2 -x^3-x^2
\ \ \ \ \ \ \ = 3x^2h+3xh^2+h^3 +2xh+h^2

And so the derivative of f(x) is given by:

f'(x) = lim_(h rarr 0) ( f(x+h)-f(x) ) / h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2h+3xh^2+h^3 +2xh+h^2 ) / h
\ \ \ \ \ \ \ \ = lim_(h rarr 0) ( 3x^2+3xh+h^2 +2x+h )
\ \ \ \ \ \ \ \ = 3x^2 +2x