How do you find the derivative using limits of h(x)=3+2/3xh(x)=3+23x?

1 Answer
Sep 21, 2017

see below

Explanation:

to avoid confusion with the hh in the definition

we will replace h(x)h(x) with f(x)f(x)

f'(x)=lim_(hrarr0)((f(x+h)-f(x))/h)

we will replace h(x) with f(x)

f(x)=3+2/3x

f'(x)=lim_(hrarr0)((3+2/3(x+h)-(3+2/3x))/h)

f'(x)=lim_(hrarr0)((cancel(3)+cancel(2/3x)+2/3hcancel(-3)cancel(-2/3x))/h)

f'(x)=lim_(hrarr0)((2/3cancel(h))/cancel(h))

f'(x)=2/3