How do you find the derivatives of s=lnroott(t)s=lntt?

1 Answer
Mar 19, 2017

d/(dt) ( ln root (t)(t)) =(1- lnt)/t^2ddt(lntt)=1lntt2

Explanation:

Using the properties of logarithms:

s = ln root(t)(t) = 1/tlnts=lntt=1tlnt

we can differentiate using the product rule:

(ds)/(dt) = 1/t d/(dt) ln t + lnt d/(dt)(1/t)dsdt=1tddtlnt+lntddt(1t)

(ds)/(dt) = 1/t 1/t + lnt (-1/t^2)dsdt=1t1t+lnt(1t2)

(ds)/(dt) = 1/t^2(1- lnt)dsdt=1t2(1lnt)