How do you find the derivatives of y=(2x+1)^ey=(2x+1)e by logarithmic differentiation?
1 Answer
Mar 8, 2017
Explanation:
Take the natural log of both sides.
lny = ln(2x + 1)^elny=ln(2x+1)e
lny = eln(2x + 1)lny=eln(2x+1)
Now use implicit differentiation and the product rule.
1/y(dy/dx) = 0(ln(2x + 1)) + (2e)/(2x + 1)1y(dydx)=0(ln(2x+1))+2e2x+1
dy/dx= y(2e/(2x + 1))dydx=y(2e2x+1)
dy/dx = (2e(2x+ 1)^e)/(2x + 1)dydx=2e(2x+1)e2x+1
By the quotient rule of exponents:
dy/dx = 2e(2x + 1)^(e - 1)dydx=2e(2x+1)e−1
Hopefully this helps!