How do you find the derivatives of y=(2x+1)^ey=(2x+1)e by logarithmic differentiation?

1 Answer
Mar 8, 2017

dy/dx = 2e(2x + 1)^(e - 1)dydx=2e(2x+1)e1

Explanation:

Take the natural log of both sides.

lny = ln(2x + 1)^elny=ln(2x+1)e

lny = eln(2x + 1)lny=eln(2x+1)

Now use implicit differentiation and the product rule.

1/y(dy/dx) = 0(ln(2x + 1)) + (2e)/(2x + 1)1y(dydx)=0(ln(2x+1))+2e2x+1

dy/dx= y(2e/(2x + 1))dydx=y(2e2x+1)

dy/dx = (2e(2x+ 1)^e)/(2x + 1)dydx=2e(2x+1)e2x+1

By the quotient rule of exponents:

dy/dx = 2e(2x + 1)^(e - 1)dydx=2e(2x+1)e1

Hopefully this helps!