How do you find the derivatives of y=lnabs(cosx)?

2 Answers
Jan 16, 2017

d/(dx) (ln abs(cosx)) = -tanx

Explanation:

We note that the function:

f(x)= ln abs (cosx)

is defined in the intervals:

x=(-pi/2+kpi, pi/2+kpi) with k in ZZ

where cosx !=0

In the central interval x in (-pi/2,pi/2) we have cosx >0, so that:

ln abs (cosx) = ln(cosx)

d/(dx) ln abs (cosx) = d/(dx) ln(cosx) = -sinx/cosx = -tanx

In any other interval we have:

x in (-pi/2+kpi, pi/2+kpi) => y = (x -kpi) in (-pi/2,pi/2)

but:

abs(cosx) = abs (cos(y+kpi)) = abs ((-1)^kcosy) = abs(cosy)

so that f(x) is periodic of period pi and f'(x) must also be necessarily periodic of period pi

In conclusion:

d/(dx) (ln abs(cosx)) = -tanx

Jan 16, 2017

-tan x, x ne an odd multiple of pi/2.

Explanation:

To make y real, x ne an odd multiple of pi/2'

Applying function of function of function rule,

y'=1/|cos x| |cos x|'

=1/|cos x|(1) (cos x)'=-sin x/|cos x|=-sinx/cosx=-tan x,

when cos x >0 to x in open Q_1 uuu Q_4 and

=1/|cos x|(-1) (cos x)'=sin x/|cos x|=sinx/(-cos x)=tan x,

when cos x <0 to x in open Q_2 uuu Q_3.

In brief,

y'=-tan x, x ne an odd multiple of pi/2.