How do you find the derivatives of y=(sintheta)^tantheta by logarithmic differentiation?

1 Answer
Feb 10, 2017

(dy)/(dx)=(sintheta)^(tantheta)(sec^2thetalnsintheta+1)

Explanation:

usinf logarithmic differentiation

y=(sintheta)^(tantheta)

lny=ln(sintheta)^(tantheta)

by laws of logs

lny=tanthetaln(sintheta)

now differentiate wrt" " x

d/dx(lny=tanthetaln(sintheta))

RHS" " will need the product rule

1/y(dy)/(dx)=sec^2thetalnsintheta+tantheta1/sinthetaxxcostheta

1/y(dy)/(dx)=sec^2thetalnsintheta+cancel((sintheta/costhetaxxcostheta/sintheta))^(=1)

1/y(dy)/(dx)=sec^2thetalnsintheta+1

(dy)/(dx)=y(sec^2thetalnsintheta+1)

(dy)/(dx)=(sintheta)^(tantheta)(sec^2thetalnsintheta+1)