How do you find the exact value for #sin105# using the half‐angle identity?

1 Answer
Feb 13, 2015

The answer is: #-(sqrt6-sqrt2)/4#

The formula of alf‐angle is:

#cos(alpha/2)=+-sqrt((1+cosalpha)/2)#, the #+-# in this case becomes #-# because the angle of #210°# is in the third quadrant and there the cosine is negative.

So:

#cos105°=-sqrt((1+cos210°))/2=-sqrt((1-sqrt3/2)/2)=-sqrt((2-sqrt3)/4)=-sqrt(2-sqrt3)/2#

or, using the formula of double radical, that says:

#sqrt(a+-sqrtb)=sqrt((a+sqrt(c))/2)+-sqrt((a-sqrt(c))/2)#, that is useful when #c=a^2-b# is a square.

So: #c=4-3=1#, and than:

#-sqrt(2-sqrt3)/2=-1/2[sqrt((2+1)/2)-sqrt(2-1)/2]=-1/2[sqrt(3/2)-sqrt(1/2)]=#

#=-1/2(sqrt3/sqrt2-sqrt1/sqrt2)=-1/2(sqrt3/sqrt2*sqrt2/sqrt2-1/sqrt2*sqrt2/sqrt2)=-1/2(sqrt6/2-sqrt2/2)=-(sqrt6-sqrt2)/4#