How do you solve \sin^2 \theta = 2 \sin^2 \frac{\theta}{2} sin2θ=2sin2θ2 over the interval [0,2pi][0,2π]?

1 Answer
Nov 20, 2014

sin^2theta=2sin^2(theta/2)sin2θ=2sin2(θ2)

by sin^2theta=1-cos^2thetasin2θ=1cos2θ and sin^2(theta/2)=1/2(1-costheta)sin2(θ2)=12(1cosθ),

=> 1-cos^2theta=1-cos theta1cos2θ=1cosθ

by subtracting 11,

=> -cos^2theta=-cos thetacos2θ=cosθ

by adding cos thetacosθ,

=> cos theta-cos^2theta=0cosθcos2θ=0

by factoring out cos thetacosθ,

=> cos theta(1-cos theta)=0cosθ(1cosθ)=0

=>{(cos theta=0 => theta= pi/2", "{3pi}/2),(cos theta=1 => theta=0", " 2pi):}

Hence, theta=0,pi/2,{3pi}/2,2pi.


I hope that this was helpful.