How do you find the first and second derivative of ln(x/20)ln(x20)?

2 Answers
Jan 18, 2017

d/(dx) ln(x/20) = 1/xddxln(x20)=1x

Explanation:

Based on the properties of logarithms:

ln(x/20) = lnx -ln20ln(x20)=lnxln20

so that:

d/(dx) ln(x/20) = d/(dx) ln(x) = 1/xddxln(x20)=ddxln(x)=1x

Jan 18, 2017

We use the Rule ln(a/b)=lna-lnb,ln(ab)=lnalnb, and get, y=lnx-ln20.y=lnxln20.

:." The First Derivative "y'=(lnx)'-(ln20)'=1/x-0

=1/x=x^-1.

"Next, since, "(x^n)'=nx^(n-1)," the Second Derivative "y''

=(y')'=(x^-1)'=-1x^(-1-1)=-1/x^2.