How do you find the general solutions for 2 cos^2 x = 3 sin x?

1 Answer
Aug 15, 2015

Use sin^2 x + cos^2 x = 1

Explanation:

2 cos^2 x = 3 sin x
2 (1 - sin^2 x) = 3 sin x
2 - 2 sin^2 x = 3 sin x
2 sin^2 x + 3 sin x - 2 = 0
(2 sin x - 1)(sin x + 2) = 0
sin x = -2 (no solutions) or sin x = 1/2 \Rightarrow x = pi/6 + 2kpi=pi/6(1+12k), k in ZZ or x=(5pi)/6+2kpi=pi/6(5+12k), k in ZZ
therefore x=pi/6(1+12k) or x=pi/6(5+12k), k in ZZ