How do you find the general solutions for cos(x/2) + cosx - 1 = 0?

1 Answer
Aug 13, 2015

Solve f(x) = cos (x/2) + cos x - 1 = 0

Ans: 77.48 + k360 deg

Explanation:

Call cos (x/2) = t
Use trig identity: cos x = 2t^2 - 1.
f(x) = t + 2t^2 - 2 = 2t^2 + t - 2.
D = d^2 = b^2 - 4ac = 1 + 16 = 17 --> d = +- sqrt17 = +- 4.12

t1 = -1/4 + sqrt17/4 = 3.12/4 = 0.78 (accepted)
t2 = -1/4 - sqrt17/4 = -5.12/4 = - 1.28 (rejected)
cos (x/2) = 0.78 --> x/2 = 38/74 deg --> x = 77.48 deg
General answer: x = 77.48 + k360.
Check.
x = 77.48 --> cos x = 0.22 --> x/2 = 38.74 --> cos (x/2) = 0.78.
cos (x/2) + cos x - 1 = 0.78 + 0.22 - 1 = 0. OK