How do you find the general solutions for sin(a)-sqrt3*cos(a)=2sin(a)3cos(a)=2?

2 Answers

Refer to explanation

Explanation:

We have that

sina-sqrt3*cosa=2=>1/2*sina-sqrt3/2*cosa=1=> cos(pi/6)*cosa-sin(pi/6)*sin(a)=-1=> cos(a+pi/6)=-1=>cos(a+pi/6)=cospi

Hence we a+pi/6=2kpi+pi=>a=2kpi+(5*pi)/6 and a+pi/6=2kpi-pi=>a=2kpi-(7pi)/6

where k is an integer.

Sep 22, 2015

Solve sin x - sqrt3cos x = 2

Ans: ((5pi)/6)

Explanation:

Call tan a = sin a/cos a = sqrt3 = tan (pi/3).
Apply the trig identity: sin (a - b) = sin a.cos b - sin b.cos a.
The equation becomes:
sin x - (sin a/cos a)cos x = 2
sin x cos a - sin a.cos x = 2cos a
sin (x - a) = sin (x - pi/3) = 2cos ((pi)/3)= 1
sin (x - pi/3) = 1 = sin ((pi)/2)
x - pi/3 = pi/2 --> x = ((pi)/2) + ((pi)/3) = ((5pi)/6)
General solution x = ((5pi)/6) + 2kpi