How do you find the general solutions for sinx = cos2x?

2 Answers

x=30^{\circ}, 270^{\circ} [0^0 \leq x \leq \360^0]

Explanation:

We know,

cos2x=cos^2x-sin^2x=1-2sin^2x

So, let's solve the equation now,

sinx=cos2x=1-2sin^2x
\rightarrow 2sin^2x+sinx-1=0
\rightarrow 2sin^2x+2sinx-sinx-1=0
\rightarrow 2sinx(sinx+1)-1(sinx+1)=0
\rightarrow (2sinx-1)(sinx+1)=0

Now,

2sinx-1=0
\rightarrow sinx=\frac{1}{2}
\rightarrow x=sin^{-1}(\frac{1}{2})
\rightarrow x=30^{\circ}

And, sinx+1=0
\rightarrow x=sin^{-1}(-1)= 270^{\circ}

As we just need the general solutions, we should take only this two values as the general solutions .
Answer : 30^0, 270^0
That's it!

Sep 18, 2015

Solve sin x = cos 2x

Explanation:

Apply trig identity: cos 2x = 1 - 2sin^2 x
sin x = 1 - 2sin^2 x. Solve the quadratic equation:
2sin^2 x + sin x - 1 = 0
Since (a - b + c = 0), use Shortcut. Two real roots: sin x = -1 and sin x = -c/a = 1/2.

sin x = 1/2 --> x = 30 deg and x = 150 deg (pi/6 and (5pi)/6)
sin x = -1 --> x = 270 deg ((3pi)/2)
General solutions:
x = 30 + k360 deg
x = 150 + k360
x = 270 + k360.