How do you find the general solutions for sqrt(2)tan x = 2 sin x2tanx=2sinx?

1 Answer
Oct 24, 2015

Solve sqrt2tan x = 2sin x.2tanx=2sinx.

Ans: 0, pi; 2pi, and +- pi/40,π;2π,and±π4
((npi) and (2npi+-pi/4) AA n in ZZ)

Explanation:

sqrt2(sin x/(cos x)) = 2sin x

sqrt2sin x = 2sin x *cos x

sqrt2sin x - 2sin x *cos x = 0

sin x (sqrt2 - 2cos x) = 0

a. sin x = 0 -> x = 0; =pi, and x = 2pi

b. cos x = sqrt2/2 -> x = +- pi/4