How do you find the indefinite integral of #int 2*x*arctan(7*x) dx#?

1 Answer
Oct 17, 2015

#x^2arctan(7x)-1/7 x+1/49 arctan(7x)+C#

Explanation:

Use integration-by-parts to start doing this integral. Let #u=arctan(7x)# so that #du=1/(1+(7x)^2) * 7=7/(1+49x^2)# and let #dv=2x\ dx# so that #v=x^2#. Then

#int 2x arctan(7x)\ dx=uv-int\ v\ du=x^2arctan(7x)-int (7x^2)/(1+49x^2)#

To do this second integral, first use long division of polynomials to write #(7x^2)/(1+49x^2)=1/7-(1/7)/(1+49x^2)# and

#int (7x^2)/(1+49x^2)\ dx=1/7 x-1/7 int 1/(1+49x^2)\ dx#

On this last integral, do a substitution: #w=7x#, #dw=7dx# to write #int 1/(1+49x^2)\ dx=1/7 int 1/(1+w^2)\ dw=1/7 arctan(w)+C#.

Now you can put everything together as follows:

#int 2x arctan(7x)\ dx=x^2arctan(7x)-1/7 x+1/49 arctan(7x)+C#.

You should take the time to check this answer by differentiation (using the product rule and chain rule).