How do you find the indefinite integral of #int 2x ln(x^2 - 8x + 18) dx#?
1 Answer
This is going to be long. The answer is:
#= color(blue)((x^2 - 14) ln(x^2 - 8x + 18) + 16sqrt2arctan((x-4)/(sqrt2)) - x^2 - 8x + C)#
The difficult/potentially confusing things you will need to know for this:
- Integration by Parts (basic understanding)
- Long Division or Synthetic Division (concept only)
- Completing the Square
- Keeping track of parentheses
- u-substitution (basic understanding)
- Integral of
#1/(1+u^2)#
First off, you should notice that this integral involves one term you can differentiate easily (
#int xln(x^2 - 8x + 18)dx#
Let:
#= x^2/2 ln(x^2 - 8x + 18) - int x^2/2 * (2x - 8)/(x^2 - 8x + 18)dx#
#= color(green)(x^2/2 ln(x^2 - 8x + 18)) - int color(green)(x^3 - 4x^2)/(x^2 - 8x + 18)dx#
Now this suggests that we have to divide out
I already tried multiplying the denominator by
#(x+4)(x^2 - 8x + 18)#
#= x^3 - 8x^2 + 18x + 4x^2 - 32x + 72#
#= color(green)(x^3 - 4x^2) - 14x + 72#
Okay, that's more like it. That means we can add
#x^3 - 4x^2 = (x+4)(x^2 - 8x + 18) + 14x - 72#
So, let's substitute back in to get:
#((x+4)(x^2 - 8x + 18) + 14x - 72)/(x^2 - 8x + 18)#
#((x+4)cancel((x^2 - 8x + 18)))/cancel(x^2 - 8x + 18) + (14x - 72)/(x^2 - 8x + 18)#
#= color(green)((14x - 72)/(x^2 - 8x + 18) + x + 4)#
Currently therefore, we have:
#= x^2/2 ln(x^2 - 8x + 18) - int (14x - 72)/(x^2 - 8x + 18) + x + 4dx#
We can do u-substitution here. Notice how
#= int (14x - 56 - 16)/(x^2 - 8x + 18)dx#
#= color(green)(int (7(2x - 8))/(x^2 - 8x + 18)dx - 16int 1/(x^2 - 8x + 18)dx)#
With this first one, the integral is fairly simple. Substitute to get:
#int 7/u du#
#= color(green)(7ln(x^2 - 8x + 18))#
(as it turns out, it has no real solutions, so the absolute value bars aren't necessary.)
For the second integral, it would be really nice if it looked like
#16*1/(x^2 - 8x + 18)#
#= 16*1/((x - 4)^2 + 2)#
To get it to look like
#= 16*1/sqrt2 int 1/(((x-4)/sqrt2)^2 + 2/2)#
#= 16*1/sqrt2 int 1/(((x-4)/sqrt2)^2 + 1)#
#= color(green)(16*(arctan((x-4)/(sqrt2)))/sqrt2)# .
That's all of the hard ones! Overall, we have just done this:
#= x^2/2 ln(x^2 - 8x + 18) - int (x^3 - 4x^2)/(x^2 - 8x + 18)dx#
#= x^2/2 ln(x^2 - 8x + 18) - int (14x - 72)/(x^2 - 8x + 18) + x + 4dx#
#= x^2/2 ln(x^2 - 8x + 18) - [7ln(x^2 - 8x + 18) - (16arctan((x-4)/(sqrt2)))/sqrt2 + color(green)(x^2/2 + 4x)]#
#= x^2/2 ln(x^2 - 8x + 18) - 7ln(x^2 - 8x + 18) + 8sqrt2arctan((x-4)/(sqrt2)) - x^2/2 - 4x#
ALMOST THERE! Now we finish by re-multiplying by
#= x^2 ln(x^2 - 8x + 18) - 14ln(x^2 - 8x + 18) + 16sqrt2arctan((x-4)/(sqrt2)) - x^2 - 8x#
#= color(blue)((x^2 - 14) ln(x^2 - 8x + 18) + 16sqrt2arctan((x-4)/(sqrt2)) - x^2 - 8x + C)#