How do you find the indefinite integral of int (2x)/(x-1)^2? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Roy E. Feb 1, 2017 2 ln |x-1| - 2/(x-1) +c Explanation: Substitute u=x-1. Then dx=du, x=u+1: int(2(u+1))/u^2 du =2int 1/u du + 2 int (du)/u^2 = 2ln|u| -2/u +c =2ln|x-1|-2/(x-1)+c Answer link Related questions How do you integrate (x+1)/(x^2+2x+1)? How do you integrate x/(1+x^4)? How do you integrate dx / (2sqrt(x) + 2x? What is the integration of 1/x? How do you integrate (1+x)/(1-x)? How do you integrate (2x^3-3x^2+x+1)/(-2x+1)? How do you find integral of ((secxtanx)/(secx-1))dx? How do you integrate (6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3? How do you integrate ((4x^2-1)^2)/x^3dx ? How do you integrate (x+3) / sqrt(x) dx? See all questions in Integrals of Rational Functions Impact of this question 10265 views around the world You can reuse this answer Creative Commons License