How do you find the indefinite integral of int (lnx)^2/x?

1 Answer
Nov 4, 2016

int (lnx)^2/x dx = 1/3(lnx)^3 + C

Explanation:

This is a straight forward with the appropriate substitution

Let u = lnx => (du)/dx=1/x , so #int ...du=int...1/xdx#

So Then,
int (lnx)^2/x dx = int u^2du
:. int (lnx)^2/x dx = 1/3u^3 + C
:. int (lnx)^2/x dx = 1/3(lnx)^3 + C