How do you find the indefinite integral of int sin(5x)sin(8x)dx?

2 Answers
Sep 23, 2015

1/6sin3x - 1/26sin13x+C

Explanation:

sinxsiny=1/2(cos(x-y)-cos(x+y))

I=int sin5x sin8x dx=1/2 int (cos(-3x) - cos(13x)) dx

I=1/2 int cos3xdx - 1/2 int cos13x dx

I= 1/6sin3x - 1/26sin13x+C

Sep 23, 2015

Let's ignore the integral symbols for now.

=> sin(5x)sin(8x)

It'd be great if we had an identity for this. Maybe we do!

sinusinv = ?

Recall that an addition/subtraction identity with cos(upmv) contains sinusinv.

cos(u - v) = cosucosv + sinusinv
cos(u + v) = cosucosv - sinusinv

We can acquire 2sinusinv from this by subtracting the two equations (and thus subtracting -sinusinv from sinusinv):

cos(u - v) - cos(u + v)
= [cosucosv + sinusinv] - [cosucosv - sinusinv]

= 2sinusinv

Therefore:

color(green)(sinusinv = (cos(u-v) - cos(u + v))/2)

Applying this identity, we get:

= [cos(5x - 8x) - cos(5x + 8x)]/2

= [cos(-3x) - cos(13x)]/2

but cos(3x) = cos(-3x), thus:

= [cos(3x) - cos(13x)]/2

This is much easier to do! Bringing back the integral symbols:

= 1/2int cos(3x)dx - 1/2int cos(13x)dx

= 1/2*1/3sin(3x) - 1/2*1/13sin(13x)

= color(blue)(1/6sin(3x) - 1/26sin(13x) + C)