How do you find the indefinite integral of int (x+1/x)^2dx?

1 Answer
Jan 17, 2017

int(x+1/x)^2dx=x^3/3+2x-1/x+C

Explanation:

Note that:

(x+1/x)^2=(x+1/x)(x+1/x)

color(white)((x+1/x)^2)=x^2+2x(1/x)+(1/x)^2

color(white)((x+1/x)^2)=x^2+2+x^-2

So:

I=int(x+1/x)^2dx=intx^2dx+2intdx+intx^-2dx

Using intdx=x and intx^ndx=x^(n+1)/(n+1) we obtain:

I=x^3/3+2x+x^-1/(-1)+C

I=x^3/3+2x-1/x+C