How do you find the indefinite integral of int x^2/(3-x^2)x23x2?

1 Answer
Jan 23, 2017

= - x + sqrt 3 tanh^(-1) (x/ (sqrt 3)) + C=x+3tanh1(x3)+C

Explanation:

int x^2/(3-x^2) color(red)(dx)x23x2dx

= int ((- 3 + x^2) + 3)/(3-x^2) dx=(3+x2)+33x2dx

= int -1 + (3)/(3-x^2) dx=1+33x2dx

= -x + color(blue)( int (3)/(3-x^2) dx) star=x+33x2dx

For the blue bit, we will use the hyperbolic identity:

1 - tanh^2 y = sech^2 y1tanh2y=sech2y

So we let x = sqrt 3 tanh y implies dx =sqrt 3 sech^2 y dyx=3tanhydx=3sech2ydy so the blue part of star becomes:

int (3)/(3-3 tanh^2 y) sqrt 3 sech^2 y \ dy

= int (3)/(3-3 tanh^2 y) sqrt 3 sech^2 y \ dy

= int 1/sech^2 y sqrt 3 sech^2 y \ dy

= sqrt 3 int dy

= sqrt 3 tanh^(-1) (x/ (sqrt 3)) + C

Feeding this into star

implies - x + sqrt 3 tanh^(-1) (x/ (sqrt 3)) + C