How do you find the indefinite integral of int (x^2-6x-20)/(x+5)x26x20x+5?

1 Answer
Apr 13, 2017

The answer is =((x+5)(x-27))/2+35ln(|x+5|)+C=(x+5)(x27)2+35ln(|x+5|)+C

Explanation:

We perform this integral by substitution.

Let u=x+5u=x+5, =>, dx=dudx=du

x=u-5x=u5

and

x^2-6x-20=(u-5)^2-6(u-5)-20x26x20=(u5)26(u5)20

=u^2-10u+25-6u+30-20=u210u+256u+3020

=u^2-16u+35=u216u+35

Therefore,

int((x^2-6x-20)dx)/(x+5)(x26x20)dxx+5

=int((u^2-16u+35)du)/u=(u216u+35)duu

=int(u-16+35/u)=(u16+35u)

=u^2/2-16u+35lnu=u2216u+35lnu

=(x+5)^2/2-16(x+5)+35ln(|x+5|)+C=(x+5)2216(x+5)+35ln(|x+5|)+C

=(x+5)(x+5-32)/2+35ln(|x+5|)+C=(x+5)x+5322+35ln(|x+5|)+C

=((x+5)(x-27))/2+35ln(|x+5|)+C=(x+5)(x27)2+35ln(|x+5|)+C