How do you find the indefinite integral of int (x^2-6x-20)/(x+5)? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Andrea S. Nov 30, 2016 int frac (x^2-6x-20) (x+5) dx = (x+5)^2/2 -16(x+5) +35 ln (x+5) Explanation: Substitute x=t-5 int frac (x^2-6x-20) (x+5) dx = int (dt)/t((t-5)^2 -6(t-5) -20) = = int (dt)/t(t^2-10t +25 -6t+30 -20) = = int (dt)/t(t^2-16t +35) = int t dt -16 int dt +35 int (dt)/t = = (t^2)/2 -16t +35 ln(t) = (x+5)^2/2 -16(x+5) +35 ln (x+5) Answer link Related questions How do you integrate (x+1)/(x^2+2x+1)? How do you integrate x/(1+x^4)? How do you integrate dx / (2sqrt(x) + 2x? What is the integration of 1/x? How do you integrate (1+x)/(1-x)? How do you integrate (2x^3-3x^2+x+1)/(-2x+1)? How do you find integral of ((secxtanx)/(secx-1))dx? How do you integrate (6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3? How do you integrate ((4x^2-1)^2)/x^3dx ? How do you integrate (x+3) / sqrt(x) dx? See all questions in Integrals of Rational Functions Impact of this question 1355 views around the world You can reuse this answer Creative Commons License