How do you find the indefinite integral of int (x^4+x-4)/(x^2+2)x4+x4x2+2?

1 Answer
Apr 13, 2018

The answer is =x^3/3-2x+1/2ln(x^2+2)+C=x332x+12ln(x2+2)+C

Explanation:

We need

int(u'(x)dx)/(u(x))=ln(u(x))+C

Perform a polynomial long division

(x^4+x-4)/(x^2+2)=x^2-2+(x)/(x^2+2)

Therefore,

int((x^4+x-4)dx)/(x^2+2)=intx^2dx-int2dx+1/2int(2xdx)/(x^2+2)

=x^3/3-2x+1/2ln(x^2+2)+C