How do you find the indefinite integral of int (x^4+x-4)/(x^2+2)?

1 Answer
Feb 19, 2017

The answer is =x^3/3-2x+1/2ln(x^2+2)+C

Explanation:

Let's perform a long division

color(white)(aaaa)x^4color(white)(aaaaaa)x-4color(white)(aaaa)|x^2+2

color(white)(aaaa)x^4+2x^2color(white)(aaaa)#color(white)(aaaaa)|#x^2-2

color(white)(aaaaa)0+2x^2+xcolor(white)(aa)-4

color(white)(aaaaaaaa)+0+xcolor(white)(aaaa)0

Therefore,

(x^4+x-4)/(x^2+2)=x^2-2+x/(x^2+2)

So,

int((x^4+x-4)dx)/(x^2+2)=intx^2dx-int2dx+int(xdx)/(x^2+2)

=x^3/3-2x+int(xdx)/(x^2+2)

For the last integral,

Let u=x^2+2, =>, du=2xdx

int(xdx)/(x^2+2)=1/2int(du)/u

=1/2lnu

=1/2ln(x^2+2)

Putting it all together

int((x^4+x-4)dx)/(x^2+2)=x^3/3-2x+1/2ln(x^2+2)+C