Let's perform a long division
#color(white)(aaaa)##x^4##color(white)(aaaaaa)##x-4##color(white)(aaaa)##|##x^2+2#
#color(white)(aaaa)##x^4+2x^2##color(white)(aaaa)####color(white)(aaaaa)##|##x^2-2#
#color(white)(aaaaa)##0+2x^2+x##color(white)(aa)##-4#
#color(white)(aaaaaaaa)##+0+x##color(white)(aaaa)##0#
Therefore,
#(x^4+x-4)/(x^2+2)=x^2-2+x/(x^2+2)#
So,
#int((x^4+x-4)dx)/(x^2+2)=intx^2dx-int2dx+int(xdx)/(x^2+2)#
#=x^3/3-2x+int(xdx)/(x^2+2)#
For the last integral,
Let #u=x^2+2#, #=>#, #du=2xdx#
#int(xdx)/(x^2+2)=1/2int(du)/u#
#=1/2lnu#
#=1/2ln(x^2+2)#
Putting it all together
#int((x^4+x-4)dx)/(x^2+2)=x^3/3-2x+1/2ln(x^2+2)+C#