Let's perform a long division
color(white)(aaaa)x^4color(white)(aaaaaa)x-4color(white)(aaaa)|x^2+2
color(white)(aaaa)x^4+2x^2color(white)(aaaa)#color(white)(aaaaa)|#x^2-2
color(white)(aaaaa)0+2x^2+xcolor(white)(aa)-4
color(white)(aaaaaaaa)+0+xcolor(white)(aaaa)0
Therefore,
(x^4+x-4)/(x^2+2)=x^2-2+x/(x^2+2)
So,
int((x^4+x-4)dx)/(x^2+2)=intx^2dx-int2dx+int(xdx)/(x^2+2)
=x^3/3-2x+int(xdx)/(x^2+2)
For the last integral,
Let u=x^2+2, =>, du=2xdx
int(xdx)/(x^2+2)=1/2int(du)/u
=1/2lnu
=1/2ln(x^2+2)
Putting it all together
int((x^4+x-4)dx)/(x^2+2)=x^3/3-2x+1/2ln(x^2+2)+C