How do you find the indefinite integral of int x(cos(8x))^2dx?

1 Answer
Oct 17, 2015

I = x^2/4+1/32xsin16x+1/512cos16x+C

Explanation:

I=int x(cos8x)^2dx

Integratioin By Parts:

int udv = uv - int vdu

u=x => du=dx

(cos8x)^2=cos^2 8x = (1+cos16x)/2

dv= (cos8x)^2dx

v=int (cos8x)^2dx = 1/2 int (1+cos16x)dx

v=1/2(x+1/16sin16x)

I = x/2(x+1/16sin16x) - 1/2int (x+1/16sin16x)dx

I = x/2(x+1/16sin16x) - 1/2(x^2/2-1/16*1/16cos16x)+C

I = 1/2(x^2+1/16xsin16x-x^2/2+1/256cos16x)+C

I = x^2/4+1/32xsin16x+1/512cos16x+C