How do you find the indefinite integral of int (x(x+2))/(x^3+3x^2-4)?

1 Answer
Jun 1, 2018

1/3ln|(x+2)^2(x-1)|+C, OR, ln|(x+2)^(2/3)(x-1)^(1/3)|+C.

Explanation:

Let, I=int(x(x+2))/(x^3+3x^2-4)dx.

The sum of the co-effs. of the poly. in the Dr. is 0.

:. (x-1) is its factor.

We have, x^3+3x^2-4=ul(x^3-x^2)+ul(4x^2-4x)+ul(4x-4),

=x^2(x-1)+4x(x-1)+4(x-1),

=(x-1)(x^2+4x+4),

=(x-1)(x+2)^2.

:. (x(x+2))/(x^3+3x^2-4)=(x(x+2))/((x-1)(x+2)^2)=x/((x-1)(x+2)).

Observe that, 2(x-1)+1(x+2)=3x. Therefore,

I=int(x(x+2))/(x^3+3x^2-4)dx

=intx/((x-1)(x+2))dx,

=1/3int(3x)/((x-1)(x+2))dx,

=1/3int{2(x-1)+1(x+2)}/((x-1)(x+2))dx,

=1/3int{(2(x-1))/((x-1)(x+2))+(1(x+2))/((x-1)(x+2))}dx,

=1/3int{2/(x+2)+1/(x-1)}dx,

=1/3{2ln|(x+2)|+ln|(x-1)|}.

:.I=1/3ln|(x+2)^2(x-1)|+C, or,

I=ln|(x+2)^(2/3)(x-1)^(1/3)|+C.

Enjoy Maths.!