How do you find the indefinite integral of intdx/(cos(5x)-1)?

2 Answers
Sep 26, 2015

1/(5tan((5x)/2))+C

Explanation:

t=tan((5x)/2) => (5x)/2=arctant => dx=(2dt)/(5(1+t^2))

We will find cos5x from:

tan^2(theta/2)=(1-costheta)/(1+costheta)

tan^2(theta/2)=(2-1-costheta)/(1+costheta)=2/(1+costheta)-1

1+costheta=2/(tan^2(theta/2)+1)

costheta=2/(tan^2(theta/2)+1)-1

costheta=(2-tan^2(theta/2)-1)/(tan^2(theta/2)+1)

costheta=(1-tan^2(theta/2))/(tan^2(theta/2)+1)

In our case:

cos5x=(1-t^2)/(1+t^2)

I=int dx/(cos5x-1)=int ((2dt)/(5(1+t^2)))/((1-t^2)/(1+t^2)-1)

I=int ((2dt)/(5(1+t^2)))/((1-t^2-1-t^2)/(1+t^2))=2/5intdt/(-2t^2)=-1/5intdt/t^2

I=1/(5t)+C=1/(5tan((5x)/2))+C

Refer to explanation

Explanation:

First set u=5x hence du=5dx=>dx=1/5du

hence the integral becomes

int 1/5*1/(cosu-1)du=1/5*int 1/(cosu-1)du

Now we must calculate int 1/(cosu-1)du hence we have that

Recall the half-angle identity:

sin²(u/2) = (1 - cosu)/2

hence:

(1 - cosu) = 2sin²(u/2)=> (cosu - 1) = - 2sin²(u/2)

The integral thus becoming:

int 1/(- 2sin²(u/2))du =

=int - (1/2) 1 /(sin²(u/2)) du =

=int - (1/2) csc²(x/2) dx

that is to say:

int [- csc²(u/2)] d(u/2) =

int (dcot(u/2))(du)

thus, in conclusion:

int 1/(cosu - 1)du = cot(u/2) + c

Hence replacing with u=5x we get that

int 1/(cos5x-1)dx=1/5*cot((5x)/2)+c