How do you find the integral of (6x+1)/(x^2+2x+3)? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer maganbhai P. Mar 18, 2018 I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+c Explanation: I=int(6x+1)/(x^2+2x+3)dx =int(6x+6)/(x^2+2x+3)dx-int5/(x^2+2x+3)dx I=3int(2x+2)/(x^2+2x+3)dx-int5/(x^2+2x+1+2)dx I=3int(d/(dx)(x^2+2x+3))/(x^2+2x+3)dx-int5/((x+1)^2+(sqrt(2))^2)dx I=3ln|x^2+2x+3|-5*1/sqrt(2)tan^-1((x+1)/sqrt(2))+c I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+c Answer link Related questions How do you integrate (x+1)/(x^2+2x+1)? How do you integrate x/(1+x^4)? How do you integrate dx / (2sqrt(x) + 2x? What is the integration of 1/x? How do you integrate (1+x)/(1-x)? How do you integrate (2x^3-3x^2+x+1)/(-2x+1)? How do you find integral of ((secxtanx)/(secx-1))dx? How do you integrate (6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3? How do you integrate ((4x^2-1)^2)/x^3dx ? How do you integrate (x+3) / sqrt(x) dx? See all questions in Integrals of Rational Functions Impact of this question 1939 views around the world You can reuse this answer Creative Commons License