I=int(6x+1)/(x^2+2x+3)dxI=∫6x+1x2+2x+3dx
=int(6x+6)/(x^2+2x+3)dx-int5/(x^2+2x+3)dx=∫6x+6x2+2x+3dx−∫5x2+2x+3dx
I=3int(2x+2)/(x^2+2x+3)dx-int5/(x^2+2x+1+2)dxI=3∫2x+2x2+2x+3dx−∫5x2+2x+1+2dx
I=3int(d/(dx)(x^2+2x+3))/(x^2+2x+3)dx-int5/((x+1)^2+(sqrt(2))^2)dxI=3∫ddx(x2+2x+3)x2+2x+3dx−∫5(x+1)2+(√2)2dx
I=3ln|x^2+2x+3|-5*1/sqrt(2)tan^-1((x+1)/sqrt(2))+cI=3ln∣∣x2+2x+3∣∣−5⋅1√2tan−1(x+1√2)+c
I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+cI=3ln∣∣x2+2x+3∣∣−5√2tan−1(x+1√2)+c