How do you find the integral of (6x+1)/(x^2+2x+3)6x+1x2+2x+3?

1 Answer
Mar 18, 2018

I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+cI=3lnx2+2x+352tan1(x+12)+c

Explanation:

I=int(6x+1)/(x^2+2x+3)dxI=6x+1x2+2x+3dx

=int(6x+6)/(x^2+2x+3)dx-int5/(x^2+2x+3)dx=6x+6x2+2x+3dx5x2+2x+3dx

I=3int(2x+2)/(x^2+2x+3)dx-int5/(x^2+2x+1+2)dxI=32x+2x2+2x+3dx5x2+2x+1+2dx

I=3int(d/(dx)(x^2+2x+3))/(x^2+2x+3)dx-int5/((x+1)^2+(sqrt(2))^2)dxI=3ddx(x2+2x+3)x2+2x+3dx5(x+1)2+(2)2dx

I=3ln|x^2+2x+3|-5*1/sqrt(2)tan^-1((x+1)/sqrt(2))+cI=3lnx2+2x+3512tan1(x+12)+c
I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+cI=3lnx2+2x+352tan1(x+12)+c