How do you find the integral of #(6x+1)/(x^2+2x+3)#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer maganbhai P. Mar 18, 2018 #I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+c# Explanation: #I=int(6x+1)/(x^2+2x+3)dx# #=int(6x+6)/(x^2+2x+3)dx-int5/(x^2+2x+3)dx# #I=3int(2x+2)/(x^2+2x+3)dx-int5/(x^2+2x+1+2)dx# #I=3int(d/(dx)(x^2+2x+3))/(x^2+2x+3)dx-int5/((x+1)^2+(sqrt(2))^2)dx# #I=3ln|x^2+2x+3|-5*1/sqrt(2)tan^-1((x+1)/sqrt(2))+c# #I=3ln|x^2+2x+3|-5/sqrt(2)tan^-1((x+1)/sqrt(2))+c# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 1719 views around the world You can reuse this answer Creative Commons License