How do you find the integral of int (1/(1+x^2) ) dx(11+x2)dx from negative infinity to 0?

2 Answers
Sep 20, 2015

pi/2π2

Explanation:

let x=tanthetax=tanθ
dx=sec^2theta d(theta)dx=sec2θd(θ)
1+tan^2theta=sec^2theta1+tan2θ=sec2θ
if x=-oo theta=-pi/2
if x=9 theta=0
int_-oo^01/(1+x^2)dx=int_-(pi/2)^0sec^2theta/sec^2thetad(theta)
=int_-(pi/2)^0d(theta)=[theta]_(-pi/2)^0=0-(-pi/2)=pi/2

Sep 21, 2015

This is related to arctanx...

d/(dx)[arctanx] = 1/(1+x^2)

:. " " int_a^b 1/(1+x^2)dx = arctanx + C

int_(-oo)^(0) 1/(1+x^2) = arctan(0) - arctan(-oo)

Due to tanx having a domain of (pi/2, pi/2) pm pik where k in ZZ, the inverse, arctanx, is a graph with a range of (-pi/2,pi/2), and it looks kind of like a sideways x^3, crossing through (0,0).

graph{arctanx [-20, 20, -3.12, 3.12]}

Therefore, as x->-oo, you get -pi/2, and so:

= 0 - (-pi/2) = color(blue)(pi/2)