How do you find the integral of int 1/(4y-1) dy∫14y−1dy from 0 to 1? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Sasha P. Sep 26, 2015 ln3/4ln34 Explanation: 4y-1=t => 4dy=dt => dy=dt/44y−1=t⇒4dy=dt⇒dy=dt4 t_1=4*0-1=-1t1=4⋅0−1=−1 t_2=4*1-1=3t2=4⋅1−1=3 I=int_0^1 1/(4y-1)dy = int_-1^3 1/t dt/4 = 1/4 int_-1^3 dt/t = 1/4 ln|t| |_-1^3I=∫1014y−1dy=∫3−11tdt4=14∫3−1dtt=14ln|t|∣∣∣3−1 I=1/4(ln|3|-ln|-1|)=1/4(ln3-ln1)=1/4(ln3-0)I=14(ln|3|−ln|−1|)=14(ln3−ln1)=14(ln3−0) I=ln3/4I=ln34 Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of ln(7x)ln(7x)? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of x^2-6x+5x2−6x+5 from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral 1/(sqrt(49-x^2))1√49−x2 from 0 to 7sqrt(3/2)7√32? How do you integrate f(x)=intsin(e^t)dtf(x)=∫sin(et)dt between 4 to x^2x2? How do you determine the indefinite integrals? How do you integrate x^2sqrt(x^(4)+5)x2√x4+5? See all questions in Definite and indefinite integrals Impact of this question 3937 views around the world You can reuse this answer Creative Commons License