How do you find the integral of int 1/(4y-1) dy14y1dy from 0 to 1?

1 Answer
Sep 26, 2015

ln3/4ln34

Explanation:

4y-1=t => 4dy=dt => dy=dt/44y1=t4dy=dtdy=dt4
t_1=4*0-1=-1t1=401=1
t_2=4*1-1=3t2=411=3

I=int_0^1 1/(4y-1)dy = int_-1^3 1/t dt/4 = 1/4 int_-1^3 dt/t = 1/4 ln|t| |_-1^3I=1014y1dy=311tdt4=1431dtt=14ln|t|31

I=1/4(ln|3|-ln|-1|)=1/4(ln3-ln1)=1/4(ln3-0)I=14(ln|3|ln|1|)=14(ln3ln1)=14(ln30)

I=ln3/4I=ln34