How do you find the integral of #int 1/sqrt(t^2-36) dt# from 6 to infinity?
1 Answer
The integral diverges.
Explanation:
The integrand is not defined at
#= int_6^7 1/sqrt(t^2-36) dt+int_7^oo 1/sqrt(t^2-36) dt# #" "# (If the integrals both exist.)
# = lim_(ararr6^+) int_a^7 1/sqrt(t^2-36) dt+lim_(brarroo)int_7^b 1/sqrt(t^2-36) dt# #" "# (If the limits both exist.)
Now we need the indefinite integral
Substitute
Which, if you don't know it, can be found here at Socratic or in most calculus textbooks, etc.
Back-substituting for
# + lim_(brarroo)[ln(sqrt(b^2-36)+b)-ln(sqrt(7^2-36)+7)]# (If the limits both exist.)
The second limit diverges, so the integral diverges.